Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 506
Filter
1.
Nervenarzt ; 95(2): 111-116, 2024 Feb.
Article in German | MEDLINE | ID: mdl-38169045

ABSTRACT

BACKGROUND: Gliomas represent the most frequent malignant primary brain tumors in adults. Despite multimodal treatment concepts involving surgery, irradiation and chemotherapy, the prognosis remains poor and they are incurable. Recent insights into the interactions between the immune system and the central nervous system as well as breakthroughs in the results of other cancer types have led to the fact that various immunotherapeutic approaches against gliomas have also been investigated and in some cases specifically developed. OBJECTIVE: This article provides an overview of the current status of different immunotherapeutic concepts against gliomas, highlighting the advantages, disadvantages, and challenges. Additionally, it provides an overview of currently ongoing immunotherapeutic clinical trials in Germany and neighboring countries. RESULTS: Previous randomized studies on antibodies against programmed cell death protein 1 (anti-PD1) immune checkpoint inhibition, viral treatment and peptide vaccination targeting the variant III of the epidermal growth factor receptor (EGFRvIII) in glioblastomas were negative with respect to survival benefits. Conversely, other immunotherapeutic approaches, such as multivalent or driver mutation-based vaccinations, cytokine-based therapy and cell therapy, demonstrated a robust scientific foundation, with at least early studies showing promising safety and pharmacodynamic effects on the tumors. DISCUSSION: Currently, immunotherapies against gliomas should only be applied within the framework of well-designed clinical studies. There are still many knowledge gaps regarding the mechanisms of action and resistance of various immunotherapies. Accompanying translational research is essential to address these gaps and develop more effective therapies.


Subject(s)
Brain Neoplasms , Cancer Vaccines , Glioma , Adult , Humans , Cancer Vaccines/therapeutic use , Vaccines, Subunit/therapeutic use , Immunotherapy
2.
Int Immunopharmacol ; 123: 110721, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37543011

ABSTRACT

Peptide vaccines have shown great potential in cancer immunotherapy by targeting tumor antigens and activating the patient's immune system to mount a specific response against cancer cells. However, the efficacy of peptide vaccines in inducing a sustained immune response and achieving clinical benefit remains a major challenge. In this review, we discuss the current status of peptide vaccines in cancer immunotherapy and strategies to improve their efficacy. We summarize the recent advancements in the development of peptide vaccines in pre-clinical and clinical settings, including the use of novel adjuvants, neoantigens, nano-delivery systems, and combination therapies. We also highlight the importance of personalized cancer vaccines, which consider the unique genetic and immunological profiles of individual patients. We also discuss the strategies to enhance the immunogenicity of peptide vaccines such as multivalent peptides, conjugated peptides, fusion proteins, and self-assembled peptides. Although, peptide vaccines alone are weak immunogens, combining peptide vaccines with other immunotherapeutic approaches and developing novel approaches such as personalized vaccines can be promising methods to significantly enhance their efficacy and improve the clinical outcomes for cancer patients.


Subject(s)
Cancer Vaccines , Neoplasms , Humans , Antigens, Neoplasm , Vaccines, Subunit/therapeutic use , Immunotherapy , Peptides/therapeutic use
3.
J Cancer Res Clin Oncol ; 149(16): 15249-15273, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37581648

ABSTRACT

BACKGROUND: Cancer, being a complex disease, presents a major challenge for the scientific and medical communities. Peptide therapeutics have played a significant role in different medical practices, including cancer treatment. METHOD: This review provides an overview of the current situation and potential development prospects of anticancer peptides (ACPs), with a particular focus on peptide vaccines and peptide-drug conjugates for cancer treatment. RESULTS: ACPs can be used directly as cytotoxic agents (molecularly targeted peptides) or can act as carriers (guiding missile) of chemotherapeutic agents and radionuclides by specifically targeting cancer cells. More than 60 natural and synthetic cationic peptides are approved in the USA and other major markets for the treatment of cancer and other diseases. Compared to traditional cancer treatments, peptides exhibit anticancer activity with high specificity and the ability to rapidly kill target cancer cells. ACP's target and kill cancer cells via different mechanisms, including membrane disruption, pore formation, induction of apoptosis, necrosis, autophagy, and regulation of the immune system. Modified peptides have been developed as carriers for drugs, vaccines, and peptide-drug conjugates, which have been evaluated in various phases of clinical trials for the treatment of different types of solid and leukemia cancer. CONCLUSIONS: This review highlights the potential of ACPs as a promising therapeutic option for cancer treatment, particularly through the use of peptide vaccines and peptide-drug conjugates. Despite the limitations of peptides, such as poor metabolic stability and low bioavailability, modified peptides show promise in addressing these challenges. Various mechanism of action of anticancer peptides. Modes of action against cancer cells including: inducing apoptosis by cytochrome c release, direct cell membrane lysis (necrosis), inhibiting angiogenesis, inducing autophagy-mediated cell death and immune cell regulation.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Peptides/pharmacology , Peptides/therapeutic use , Neoplasms/pathology , Cell Death , Necrosis , Vaccines, Subunit/therapeutic use , Vaccines, Subunit/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
4.
J Vis Exp ; (197)2023 07 07.
Article in English | MEDLINE | ID: mdl-37486131

ABSTRACT

The inhibition of checkpoint receptors (PD-1, PD-L1, and CTLA-4) with monoclonal antibodies has shown great benefit in clinical trials for treating cancer patients and has become a mainstay approach in modern cancer immunotherapy. However, only a subset of patients respond to checkpoint monoclonal antibody immunotherapy. Therefore, it is urgent to develop new therapeutic strategies against cancer. A novel B-cell peptide epitope PDL1 (programmed death ligand 1) cancer vaccine has been developed, with amino acids 130-147 linked to the MVF peptide ("promiscuous" T-cell measles virus fusion protein) via a GPSL linker. Preclinical testing has indicated that this PDL1 vaccine (PDL1-Vaxx) effectively stimulates highly immunogenic antibodies in animals. Animals immunized with PDL1-Vaxx show reduced tumor burden and extended survival rates in various animal cancer models. The mechanisms of action indicate that vaccine-elicited antibodies inhibit tumor cell proliferation, induce apoptosis, and block the PD-1/PD-L1 interaction. This manuscript introduces a magnetic bead-based assay that uses a dual-reporter flow analysis system to evaluate the PD-1/PD-L1 interaction and its blockade by the anti-PDL1 antibodies raised against the PDL1-Vaxx.


Subject(s)
Neoplasms , Smallpox Vaccine , Animals , B7-H1 Antigen , Programmed Cell Death 1 Receptor , Smallpox Vaccine/therapeutic use , Neoplasms/drug therapy , Antibodies, Monoclonal , Peptides , Vaccines, Subunit/therapeutic use , Magnetic Phenomena , Immunotherapy
5.
Nat Cancer ; 4(7): 1016-1035, 2023 07.
Article in English | MEDLINE | ID: mdl-37430060

ABSTRACT

Anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC) is treated with ALK tyrosine kinase inhibitors (TKIs), but the lack of activity of immune checkpoint inhibitors (ICIs) is poorly understood. Here, we identified immunogenic ALK peptides to show that ICIs induced rejection of ALK+ tumors in the flank but not in the lung. A single-peptide vaccination restored priming of ALK-specific CD8+ T cells, eradicated lung tumors in combination with ALK TKIs and prevented metastatic dissemination of tumors to the brain. The poor response of ALK+ NSCLC to ICIs was due to ineffective CD8+ T cell priming against ALK antigens and is circumvented through specific vaccination. Finally, we identified human ALK peptides displayed by HLA-A*02:01 and HLA-B*07:02 molecules. These peptides were immunogenic in HLA-transgenic mice and were recognized by CD8+ T cells from individuals with NSCLC, paving the way for the development of a clinical vaccine to treat ALK+ NSCLC.


Subject(s)
Cancer Vaccines , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Mice , Animals , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Anaplastic Lymphoma Kinase/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Cancer Vaccines/therapeutic use , Receptor Protein-Tyrosine Kinases/therapeutic use , CD8-Positive T-Lymphocytes/pathology , Vaccines, Subunit/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/therapeutic use , Mice, Transgenic , Vaccination
6.
Crit Rev Oncol Hematol ; 187: 104032, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37217108

ABSTRACT

Peptide vaccines that target vascular endothelial growth factor (VEGF) pathway have shown promising results in inducing strong anti-tumor immune responses with minimal toxicity in various clinical studies. This systematic review was conducted to provide a comprehensive evaluation of the therapeutic efficacy, immune response, survival rate, and side effects of VEGF/VEGF receptor-based peptide vaccines. VEGF/VEGFR2 peptide vaccines were found to be safe and effective in inducing anti-tumor immune responses, while induced moderate clinical benefit. In this regard, further clinical trials are necessary to fully evaluate their clinical effects and the exact correlation between induction of immune response and clinical outcomes.


Subject(s)
Neoplasms , Vascular Endothelial Growth Factor A , Humans , Neoplasms/drug therapy , Vascular Endothelial Growth Factors/therapeutic use , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-2/therapeutic use , Vaccines, Subunit/therapeutic use
7.
J Immunother Cancer ; 11(5)2023 05.
Article in English | MEDLINE | ID: mdl-37217243

ABSTRACT

BACKGROUND: We have previously published initial efficacy of the indoleamine 2,3-dioxygenase (IDO)/anti-programmed death ligand 1 (PD-L1) vaccine in combination with nivolumab in 30 anti-PD-1 therapy naïve patients with metastatic melanoma (cohort A). We now report long-term follow-up of patients in cohort A. Further, we report results from cohort B, where the peptide vaccine was added to anti-PD-1 therapy for patients with progressive disease during anti-PD-1 treatment. METHODS: All patients were treated with a therapeutic peptide vaccine in Montanide targeting IDO and PD-L1 combined with nivolumab (NCT03047928). A long-term follow-up of safety, response rates, and survival rates were performed in cohort A including patient subgroup analyses. Safety and clinical responses were analyzed for cohort B. RESULTS: Cohort A: At data cut-off, January 5, 2023, the overall response rate (ORR) was 80%, and 50% of the 30 patients obtained a complete response (CR). The median progression-free survival (mPFS) was 25.5 months (95% CI 8.8 to 39), and median overall survival (mOS) was not reached (NR) (95% CI 36.4 to NR). The minimum follow-up time was 29.8 months, and the median follow-up was 45.3 months (IQR 34.8-59.2). A subgroup evaluation further revealed that cohort A patients with unfavorable baseline characteristics, including either PD-L1 negative tumors (n=13), elevated lactate dehydrogenase (LDH) levels (n=11), or M1c (n=17) obtained both favorable response rates and durable responses. The ORR was 61.5%, 79%, and 88% for patients with PD-L1- tumors, elevated LDH, and M1c, respectively. The mPFS was 7.1 months for patients with PD-L1- tumors, 30.9 months for patients with elevated LDH, and 27.9 months for M1c patients. Cohort B: At data cut-off, the best overall response was stable disease for 2 of the 10 evaluable patients. The mPFS was 2.4 months (95% CI 1.38 to 2.52), and the mOS was 16.7 months (95% CI 4.13 to NR). CONCLUSION: This long-term follow-up confirms the promising and durable responses in cohort A. Subgroup analyses of patients with unfavorable baseline characteristics revealed that high response rates and survival rates were also found in patients with either PD-L1 negative tumors, elevated LDH levels, or M1c. No meaningful clinical effect was demonstrated in cohort B patients. TRIAL REGISTRATION NUMBER: NCT03047928.


Subject(s)
Melanoma , Nivolumab , Humans , B7-H1 Antigen , Follow-Up Studies , Nivolumab/pharmacology , Nivolumab/therapeutic use , Vaccines, Subunit/therapeutic use
8.
Cancer Immunol Immunother ; 72(8): 2865-2871, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37093243

ABSTRACT

We previously conducted a randomized phase II trial of OCV-501, a WT1 peptide presented by helper T cells, in elderly AML (acute myeloid leukemia) patients in first remission, indicating no difference in 2-year disease-free survival (DSF) between the OCV-501 and placebo groups. Here, we analyzed 5-year outcome and biomarkers. Five-year DFS was 36.0% in the OCV-501 group (N = 52) and 33.7% in the placebo group (N = 53), with no significant difference (p = 0.74). The peripheral WT1 mRNA levels were marginally suppressed in the OCV-501 group compared with the placebo group. Enhanced anti-OCV-501 IgG response by the 25th week was an independent favorable prognostic factor. Anti-OCV-501 IFNγ responses were less frequent than the IgG reactions. These findings suggest that host immunoreactivity has a significant impact on the prognosis of AML and that further improvement of the WT1 peptide vaccine is needed.


Subject(s)
Leukemia, Myeloid, Acute , WT1 Proteins , Humans , Aged , Follow-Up Studies , Prognosis , Leukemia, Myeloid, Acute/genetics , Vaccines, Subunit/therapeutic use , Immunoglobulin G
9.
Nat Commun ; 14(1): 1138, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36878897

ABSTRACT

Adjuvant-containing subunit vaccines represent a promising approach for protection against tuberculosis (TB), but current candidates require refrigerated storage. Here we present results from a randomized, double-blinded Phase 1 clinical trial (NCT03722472) evaluating the safety, tolerability, and immunogenicity of a thermostable lyophilized single-vial presentation of the ID93 + GLA-SE vaccine candidate compared to the non-thermostable two-vial vaccine presentation in healthy adults. Participants were monitored for primary, secondary, and exploratory endpoints following intramuscular administration of two vaccine doses 56 days apart. Primary endpoints included local and systemic reactogenicity and adverse events. Secondary endpoints included antigen-specific antibody (IgG) and cellular immune responses (cytokine-producing peripheral blood mononuclear cells and T cells). Both vaccine presentations are safe and well tolerated and elicit robust antigen-specific serum antibody and Th1-type cellular immune responses. Compared to the non-thermostable presentation, the thermostable vaccine formulation generates greater serum antibody responses (p < 0.05) and more antibody-secreting cells (p < 0.05). In this work, we show the thermostable ID93 + GLA-SE vaccine candidate is safe and immunogenic in healthy adults.


Subject(s)
Immunogenicity, Vaccine , Tuberculosis Vaccines , Vaccines, Subunit , Adult , Humans , Adjuvants, Immunologic/adverse effects , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/therapeutic use , Antibodies/immunology , Antibody-Producing Cells/immunology , Leukocytes, Mononuclear/immunology , Tuberculosis Vaccines/adverse effects , Tuberculosis Vaccines/immunology , Tuberculosis Vaccines/pharmacology , Tuberculosis Vaccines/therapeutic use , Immunogenicity, Vaccine/immunology , Treatment Outcome , Healthy Volunteers , Temperature , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/adverse effects , Vaccines, Subunit/immunology , Vaccines, Subunit/pharmacology , Vaccines, Subunit/therapeutic use , Double-Blind Method
11.
Acta Biomater ; 158: 535-546, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36632876

ABSTRACT

Vaccination shows great promise in cancer immunotherapy. However, the induction of robust and broad therapeutic CD8 T cell immunity against tumors is challenging due to the essential heterogenicity of tumor antigen expression. Recently, bioinspired materials have reshaped the field of cancer nanomedicine. Herein, a bioinspired nanofibrous trivalent peptide hydrogel vaccine was constructed using the spontaneous supramolecular co-assembly of three antigenic epitope-conjugated peptides, which could mimic the fibrillar structure and biological function of the extracellular matrix and naturally occurring protein assembly. The hydrogel vaccine could be accurately and flexibly adjusted to load each antigenic peptide at a defined ratio, which facilitated the antigen presentation of dendritic cells and significantly improved the initiation of CD8 T cell response and the secretion of interferon-γ (IFN-γ). C57BL/6 mice were immunized with the trivalent peptide hydrogel vaccine, where it elicited a high broad-spectrum antitumor CD8 T cell response that significantly inhibited the growth of B16 tumors in the absence of additional immunoadjuvants or delivery systems. In summary, the supramolecular assembly of triple antigenic epitope-conjugated peptides offers a simple, customizable, and versatile approach for the development of cancer vaccines with remarkable therapeutic efficacy, thereby providing a highly versatile platform for the application of personalized multivalent tumor vaccines. STATEMENT OF SIGNIFICANCE: (1) We report a feasible, versatile and bioinspired approach to manufacture a multivalent peptide-based hydrogel cancer vaccine in the absence of additional adjuvants, which closely mimics immune niches, co-delivers antigen epitopes, greatly promotes antigen presentation to DCs and their subsequent homing to dLNs and elicits a broad-spectrum antitumor CD8 T cell response, resulting in significant inhibition of B16 tumor growth. (2) This feasible and efficient co-assembly strategy provides an attractive platform for engineering a range of multivalent vaccines at defined ratios to further enhance antigen-specific T cell responses. This approach may also be used for personalized immunotherapy with neo-epitopes.


Subject(s)
Cancer Vaccines , Immunotherapy , Neoplasms , Vaccines, Subunit , Animals , Mice , Adjuvants, Immunologic , Antigens, Neoplasm , Cancer Vaccines/chemistry , Cancer Vaccines/therapeutic use , CD8-Positive T-Lymphocytes , Dendritic Cells , Epitopes , Hydrogels/chemistry , Hydrogels/therapeutic use , Immunotherapy/methods , Mice, Inbred C57BL , Neoplasms/therapy , Peptides/therapeutic use , Vaccines, Subunit/chemistry , Vaccines, Subunit/therapeutic use
12.
Int Immunopharmacol ; 116: 109740, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36696858

ABSTRACT

Autoimmune diseases are caused by the dysfunction of the body's immune regulatory system, which leads to the recognition of self-antigens and the destruction of self-tissues and is mediated by immune cells such as T and B cells, and affects 5-10% of the population worldwide. Current treatments such as non-steroidal anti-inflammatory drugs and glucocorticoids can only relieve symptoms of the disease and are accompanied by serious side effects that affect patient quality of life. The recent rise in antigen-specific therapies, especially vaccines carrying autoantigenic peptides, promises to change this disadvantage, where research has increased dramatically in the last decade. This therapy established specific immune tolerance by delivering peptide fragments containing disease-specific self-antigen epitopes to suppress excessive immune responses, thereby exerting a therapeutic effect, with high safety and specificity. This article presents the latest progress on the treatment of autoimmune diseases with autoantigen peptide vaccines. It includes the construction of peptide vaccine delivery system, the mechanism of inducing immune tolerance and its application.


Subject(s)
Autoimmune Diseases , Vaccines , Humans , Quality of Life , Immune Tolerance , Vaccines/therapeutic use , Autoantigens , Vaccines, Subunit/therapeutic use
13.
J Clin Oncol ; 41(7): 1453-1465, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36521103

ABSTRACT

PURPOSE: Despite intensive treatment with surgery, radiation therapy, temozolomide (TMZ) chemotherapy, and tumor-treating fields, mortality of newly diagnosed glioblastoma (nGBM) remains very high. SurVaxM is a peptide vaccine conjugate that has been shown to activate the immune system against its target molecule survivin, which is highly expressed by glioblastoma cells. We conducted a phase IIa, open-label, multicenter trial evaluating the safety, immunologic effects, and survival of patients with nGBM receiving SurVaxM plus adjuvant TMZ following surgery and chemoradiation (ClinicalTrials.gov identifier: NCT02455557). METHODS: Sixty-four patients with resected nGBM were enrolled including 38 men and 26 women, in the age range of 20-82 years. Following craniotomy and fractionated radiation therapy with concurrent TMZ, patients received four doses of SurVaxM (500 µg once every 2 weeks) in Montanide ISA-51 plus sargramostim (granulocyte macrophage colony-stimulating factor) subcutaneously. Patients subsequently received adjuvant TMZ and maintenance SurVaxM concurrently until progression. Progression-free survival (PFS) and overall survival (OS) were reported. Immunologic responses to SurVaxM were assessed. RESULTS: SurVaxM plus TMZ was well tolerated with no serious adverse events attributable to SurVaxM. Of the 63 patients who were evaluable for outcome, 60 (95.2%) remained progression-free 6 months after diagnosis (prespecified primary end point). Median PFS was 11.4 months and median OS was 25.9 months measured from first dose of SurVaxM. SurVaxM produced survivin-specific CD8+ T cells and antibody/immunoglobulin G titers. Apparent clinical benefit of SurVaxM was observed in both methylated and unmethylated patients. CONCLUSION: SurVaxM appeared to be safe and well tolerated. The combination represents a promising therapy for nGBM. For patients with nGBM treated in this manner, PFS may be an acceptable surrogate for OS. A large randomized clinical trial of SurVaxM for nGBM is in progress.


Subject(s)
Brain Neoplasms , Glioblastoma , Male , Humans , Female , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Temozolomide/therapeutic use , Glioblastoma/drug therapy , Survivin/therapeutic use , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/drug therapy , Adjuvants, Immunologic/therapeutic use , Vaccines, Subunit/therapeutic use
14.
Immunol Res ; 71(2): 247-266, 2023 04.
Article in English | MEDLINE | ID: mdl-36459272

ABSTRACT

Brucella suis mediates the transmission of brucellosis in humans and animals and a significant facultative zoonotic pathogen found in livestock. It has the capacity to survive and multiply in a phagocytic environment and to acquire resistance under hostile conditions thus becoming a threat globally. Antibiotic resistance is posing a substantial public health threat, hence there is an unmet and urgent clinical need for immune-based non-antibiotic methods to treat brucellosis. Hence, we aimed to explore the whole proteome of Brucella suis to predict antigenic proteins as a vaccine target and designed a novel chimeric vaccine (multi-epitope vaccine) through subtractive genomics-based reverse vaccinology approaches. The applied subsequent hierarchical shortlisting resulted in the identification of Multidrug efflux Resistance-nodulation-division (RND) transporter outer membrane subunit (gene BepC) that may act as a potential vaccine target. T-cell and B-cell epitopes have been predicted from target proteins using a number of immunoinformatic methods. Six MHC I, ten MHC II, and four B-cell epitopes were used to create a 324-amino-acid MEV construct, which was coupled with appropriate linkers and adjuvant. To boost the immunological response to the vaccine, the vaccine was combined with the TLR4 agonist HBHA protein. The MEV structure predicted was found to be highly antigenic, non-toxic, non-allergenic, flexible, stable, and soluble. To confirm the interactions with the receptors, a molecular docking simulation of the MEV was done using the human TLR4 (toll-like receptor 4) and HLAs. The stability and binding of the MEV-docked complexes with TLR4 were assessed using molecular dynamics (MD) simulation. Finally, MEV was reverse translated, its cDNA structure was evaluated, and then, in silico cloning into an E. coli expression host was conducted to promote maximum vaccine protein production with appropriate post-translational modifications. These comprehensive computer calculations backed up the efficacy of the suggested MEV in protecting against B. suis infections. However, more experimental validations are needed to adequately assess the vaccine candidate's potential. HIGHLIGHTS: • Subtractive genomic analysis and reverse vaccinology for the prioritization of novel vaccine target • Examination of chimeric vaccine in terms of allergenicity, antigenicity, MHC I, II binding efficacy, and structural-based studies • Molecular docking simulation method to rank based vaccine candidate and understand their binding modes.


Subject(s)
Brucella Vaccine , Brucella suis , Brucellosis , Animals , Humans , Brucella suis/genetics , Brucella suis/immunology , Brucellosis/genetics , Brucellosis/immunology , Brucellosis/prevention & control , Computational Biology , Epitopes, B-Lymphocyte/genetics , Epitopes, T-Lymphocyte , Escherichia coli , Molecular Docking Simulation , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/immunology , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology , Vaccines, Subunit/therapeutic use , Drug Resistance, Bacterial/genetics , Drug Resistance, Bacterial/immunology , Proteome/genetics , Proteome/immunology , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Brucella Vaccine/genetics , Brucella Vaccine/immunology , Brucella Vaccine/therapeutic use , Epitopes/genetics , Epitopes/immunology , Vaccine Development , Drug Design
15.
J Clin Oncol ; 41(2): 373-384, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36070539

ABSTRACT

PURPOSE: Universal cancer peptide-based vaccine (UCPVax) is a therapeutic vaccine composed of two highly selected helper peptides to induce CD4+ T helper-1 response directed against telomerase. This phase Ib/IIa trial was designed to test the safety, immunogenicity, and efficacy of a three-dose schedule in patients with metastatic non-small-cell lung cancer (NSCLC). PATIENTS AND METHODS: Patients with refractory NSCLC were assigned to receive three vaccination doses of UCPVax (0.25 mg, 0.5 mg, and 1 mg) using a Bayesian-based phase Ib followed by phase IIa de-escalating design. The primary end points were dose-limiting toxicity and immune response after three first doses of vaccine. Secondary end points were overall survival (OS) and progression-free survival at 1 year. RESULTS: A total of 59 patients received UCPVax; 95% had three prior lines of systemic therapy. No dose-limiting toxicity was observed in 15 patients treated in phase Ib. The maximum tolerated dose was 1 mg. Fifty-one patients were eligible for phase IIa. The third and sixth dose of UCPVax induced specific CD4+ T helper 1 response in 56% and 87.2% of patients, respectively, with no difference between three dose levels. Twenty-one (39%) patients achieved disease control (stable disease, n = 20; complete response, n = 1). The 1-year OS was 34.1% (95% CI, 23.1 to 50.4), and the median OS was 9.7 months, with no significant difference between dose levels. The 1-year progression-free survival and the median OS were 17.2% (95% CI, 7.8 to 38.3) and 11.6 months (95% CI, 9.7 to 16.7) in immune responders (P = .015) and 4.5% (95% CI, 0.7 to 30.8) and 5.6 months (95% CI, 2.5 to 10) in nonresponders (P = .005), respectively. CONCLUSION: UCPVax was highly immunogenic and safe and provide interesting 1-year OS rate in heavily pretreated advanced NSCLC.


Subject(s)
Cancer Vaccines , Carcinoma, Non-Small-Cell Lung , Immunogenicity, Vaccine , Lung Neoplasms , Humans , Bayes Theorem , Cancer Vaccines/adverse effects , Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , Carcinoma, Non-Small-Cell Lung/therapy , Lung Neoplasms/therapy , Vaccines, Subunit/adverse effects , Vaccines, Subunit/immunology , Vaccines, Subunit/therapeutic use
16.
Front Immunol ; 13: 936667, 2022.
Article in English | MEDLINE | ID: mdl-36341464

ABSTRACT

Background: Even after complete surgical treatment or chemotherapy, Non-Small Cell Lung Cancer (NSCLC) patients are also at substantial risk for recurrence and spread trend. Therapeutic cancer vaccination could increase the anti-tumor immune response and prevent tumor relapse. This study aimed to assess the characteristics of NSCLC therapeutic vaccines registered on ClinicalTrials.gov. Methods: We conducted a cross-sectional, descriptive study of clinical trials for Non-Small Cell Lung Cancer Therapeutic Vaccines Registered on ClinicalTrials.gov (https://clinicaltrials.gov/) through March 17, 2022. Results: This study encompassed 117 registered trials included for data analysis. The number of trials was significantly correlated with a beginning year (r = 0.504, P < 0.010). Of these trials, 45.30% were completed, 12.82% were terminated, and 8.55% were withdrawn. More than half of trials (52.99%) were funded by industry, and more than half of trials (52.14%) were located in economically developed North America. Regarding study designs of these trials, 27.35% were randomized, 52.14% were single group assignment, 83.76% were without masking, 35.90% were phase 1, and more than half of the trials (56.41%) recruited less than 50 participants. The highest proportion of vaccine types was protein/peptide vaccines (41.88%). Regarding TNM staging, the highest proportion of the trials is stage III-IV (26.50%). Conclusion: The number of clinical trials about the cancer therapeutic vaccines was sustained an increase in recent years. The main characteristic of clinical trials for NSCLC therapeutic vaccines is lack of randomized control, lack of mask, and recruiting less than 50 participants. In recent years, the protein/peptide vaccines for NSCLC active immunotherapy have been well studied.


Subject(s)
Cancer Vaccines , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/pathology , Cross-Sectional Studies , Neoplasm Recurrence, Local/drug therapy , Cancer Vaccines/therapeutic use , Vaccines, Subunit/therapeutic use
17.
J Immunother Cancer ; 10(9)2022 09.
Article in English | MEDLINE | ID: mdl-36113894

ABSTRACT

BACKGROUND: Personalized neoantigen vaccine could induce a robust antitumor immune response in multiple cancers, whose efficacy could be further enhanced by combining with programmed cell death 1 blockade (α-PD-1). However, the corresponding immune response and synergistic mechanisms remain largely unclear. Here, we aimed to develop clinically available combinational therapeutic strategy and further explore its potential antitumor mechanisms in hepatocellular carcinoma (HCC). METHODS: Neoantigen peptide vaccine (NeoVAC) for murine HCC cell line Hepa1-6 was developed and optimized by neoantigen screening and adjuvant optimization. Then the synergistic efficacy and related molecular mechanisms of NeoVAC combined with α-PD-1 in HCC were evaluated by orthotopic HCC mouse model, single-cell RNA sequencing, tetramer flow cytometry, immunofluorescence, etc. The tumor-killing capacity of CD8+ tissue-resident memory T cells (CD8+ TRMs) was assessed by orthotopic HCC mouse model, and autologous patient-derived cells. RESULTS: NeoVAC, which consisted of seven high immunogenic neoantigen peptides and clinical-grade Poly(I:C), could generate a strong antitumor immune response in HCC mouse models. Significantly, its efficacy could be further improved by combining with α-PD-1, with 80% of durable tumor regression and long-term immune memory in orthotopic HCC models. Moreover, in-depth analysis of the tumor immune microenvironment showed that the percentage of CD8+ TRMs was remarkedly increased in NeoVAC plus α-PD-1 treatment group, and positively associated with the antitumor efficacy. In vitro and in vivo T-cell cytotoxicity assay further confirmed the strong tumor-killing capacity of CD8+ TRMs sorting from orthotopic mouse HCC or patient's HCC tissue. CONCLUSIONS: This study showed that NeoVAC plus α-PD-1 could induce a strong antitumor response and long-term tumor-specific immune memory in HCC by increasing CD8+ TRMs infiltration, which might serve as a potential immune-therapeutic target for HCC.


Subject(s)
CD8-Positive T-Lymphocytes , Cancer Vaccines , Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Cancer Vaccines/therapeutic use , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/therapy , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Memory T Cells , Mice , Peptides/therapeutic use , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Tumor Microenvironment , Vaccines, Subunit/therapeutic use
18.
Gan To Kagaku Ryoho ; 49(9): 922-927, 2022 Sep.
Article in Japanese | MEDLINE | ID: mdl-36156006

ABSTRACT

Cancer immunotherapy including immune checkpoint inhibitors(ICIs)have established itself as the fourth cancer therapy. However, the response rate of ICIs is still only about 20%, and tumors resistant to ICIs are often so-called"cold-tumor"with low tumor immunogenicity. Therefore, research and development is being conducted worldwide on how to convert cold- tumors into hot-tumors with high immunogenicity. In this paper, we review the relationship between tumor immunogenicity and ICI, as well as therapeutic methods to enhance tumor immunogenicity, and introduce our research about novel cancer peptide vaccination therapy.


Subject(s)
Cancer Vaccines , Neoplasms , Antigens, Neoplasm , Cancer Vaccines/therapeutic use , Humans , Immune Checkpoint Inhibitors , Immunotherapy , Neoplasms/therapy , Vaccines, Subunit/therapeutic use
19.
J Immunother Cancer ; 10(9)2022 09.
Article in English | MEDLINE | ID: mdl-36100309

ABSTRACT

BACKGROUND: A vaccine containing 6 melanoma-associated peptides to stimulate helper T cells (6MHP) is safe, immunogenic, and clinically active. A phase I/II trial was designed to evaluate safety and immunogenicity of 6MHP vaccines plus programmed death 1 (PD-1) blockade. PARTICIPANTS AND METHODS: Participants with advanced melanoma received 6MHP vaccines in an incomplete Freund's adjuvant (6 vaccines over 12 weeks). Pembrolizumab was administered intravenously every 3 weeks. Tumor biopsies at baseline and day 22 were analyzed by multiplex immunohistochemistry. Primary end points were safety (Common Terminology Criteria for Adverse Events V.4.03) and immunogenicity (ex vivo interferon-γ ELISpot assay). Additional end points included changes in the tumor microenvironment (TME) and clinical outcomes. RESULTS: Twenty-two eligible participants were treated: 6 naïve to PD-1 antibody (Ab) and 16 PD-1 Ab-experienced. Median follow-up was 24.4 months. Most common treatment-related adverse events (any grade) included injection site reactions, fatigue, anemia, lymphopenia, fever, elevated aspartate aminotransferase, pruritus, and rash. Treatment-related dose-limiting toxicities were observed in 3 (14%) participants, which did not cross the study safety bound. A high durable T cell response (Rsp) to 6MHP was detected in only one participant, but twofold T cell Rsps to 6MHP were detected in 7/22 (32%; 90% CI (16% to 52%)) by week 13. Objective clinical responses were observed in 23% (1 complete response, 4 partial responses), including 4/6 PD-1 Ab-naïve (67%) and 1/16 PD-1 Ab-experienced (6%). Overall survival (OS) was longer for PD-1 Ab-naïve than Ab-experienced participants (HR 6.3 (90% CI (2.1 to 28.7)). In landmark analyses at 13 weeks, OS was also longer for those with T cell Rsps (HR 6.5 (90% CI (2.1 to 29.2)) and for those with objective clinical responses. TME evaluation revealed increased densities of CD8+ T cells, CD20+ B cells, and Tbet+ cells by day 22. CONCLUSIONS: Treatment with the 6MHP vaccine plus pembrolizumab was safe, increased intratumoral lymphocytes, and induced T cell Rsps associated with prolonged OS. The low T cell Rsp rate in PD-1 Ab-experienced participants corroborates prior murine studies that caution against delaying cancer vaccines until after PD-1 blockade. The promising objective response rate and OS in PD-1 Ab-naïve participants support consideration of a larger study in that setting.


Subject(s)
Cancer Vaccines , Melanoma , CD8-Positive T-Lymphocytes , Humans , Melanoma/drug therapy , Programmed Cell Death 1 Receptor , Tumor Microenvironment , Vaccines, Subunit/therapeutic use
20.
Oncoimmunology ; 11(1): 2110218, 2022.
Article in English | MEDLINE | ID: mdl-35968405

ABSTRACT

Although it has proven difficult to demonstrate the clinical efficacy of therapeutic vaccination as a monotherapy in advanced cancers, its combination with an immunomodulatory treatment to reduce intra-tumor immunosuppression and improve vaccine efficacy is a very promising strategy. In this context, we are studying the combination of a vaccine composed of peptides of the tumor antigen survivin (SVX vaccine) with the anti-angiogenic agent sunitinib in a colorectal carcinoma model. To this end, we have been focusing on administration scheduling and have highlighted a therapeutic synergy between SVX vaccine and sunitinib when the vaccine was administered at the end of anti-angiogenic treatment. In this setting, a prolonged control of tumor growth associated with an important percentage of complete tumor regression was observed. Studying the remodeling induced by each therapy on the immunological and angiogenic tumor microenvironment over time we observed, during sunitinib treatment, a transient increase in polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) and a decrease in NK cells in the tumor microenvironment. In contrast, after sunitinib treatment was stopped, a decrease in PMN-MDSC populations has been observed in the tumor, associated with an increase in NK cells, pericyte coverage of tumor vessels and CD8+ T cell population and functionality. In conclusion, sunitinib treatment results in the promotion of an immune-favorable tumor microenvironment that can guide the optimal sequence of vaccine and anti-angiogenic combination to reinforce their synergy.


Subject(s)
Immunotherapy , Neoplasms , Humans , Immunotherapy/methods , Sunitinib/therapeutic use , Tumor Microenvironment , Vaccines, Subunit/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...